Computational simulation of the predicted dosimetric impact of adjuvant yttrium-90 PET/CT-guided percutaneous ablation following radioembolization
نویسندگان
چکیده
BACKGROUND 90Y PET/CT post-radioembolization imaging has demonstrated that the distribution of 90Y in a tumor can be non-uniform. Using computational modeling, we predicted the dosimetric impact of post-treatment 90Y PET/CT-guided percutaneous ablation of the portions of a tumor receiving the lowest absorbed dose. A cohort of fourteen patients with non-resectable liver cancer previously treated using 90Y radioembolization were included in this retrospective study. Each patient exhibited potentially under-treated areas of tumor following treatment based on quantitative 90Y PET/CT. 90Y PET/CT was used to guide electrode placement for simulated adjuvant radiofrequency ablation in areas of tumor receiving the lowest dose. The finite element method was used to solve Penne's bioheat transport equation, coupled with the Arrhenius thermal cell-death model to determine 3D thermal ablation zones. Tumor and unablated tumor absorbed-dose metrics (average dose, D50, D70, D90, V100) following ablation were compared, where D70 is the minimum dose to 70% of tumor and V100 is the fractional tumor volume receiving more than 100 Gy. RESULTS Compared to radioembolization alone, 90Y radioembolization with adjuvant ablation was associated with predicted increases in all tumor dose metrics evaluated. The mean average absorbed dose increased by 11.2 ± 6.9 Gy. Increases in D50, D70, and D90 were 11.0 ± 6.9 Gy, 13.3 ± 10.9 Gy, and 11.8 ± 10.8 Gy, respectively. The mean increase in V100 was 7.2 ± 4.2%. All changes were statistically significant (P < 0.01). A negative correlation between pre-ablation tumor volume and D50, average dose, and V100 was identified (ρ < - 0.5, P < 0.05) suggesting that adjuvant radiofrequency ablation may be less beneficial to patients with large tumor burdens. CONCLUSIONS This study has demonstrated that adjuvant 90Y PET/CT-guided radiofrequency ablation may improve tumor absorbed-dose metrics. These data may justify a prospective clinical trial to further evaluate this hybrid approach.
منابع مشابه
A Comparison of Techniques for 90Y PET/CT Image-Based Dosimetry Following Radioembolization with Resin Microspheres
(90)Y PET/CT following radioembolization has recently been established as a viable diagnostic tool, capable of producing images that are both quantitative and have superior image quality than alternative (90)Y imaging modalities. Because radioembolization is assumed to be a permanent implant, it is possible to convert quantitative (90)Y PET image sets into data representative of spatial committ...
متن کاملNon-Target Activity Detection by Post-Radioembolization Yttrium-90 PET/CT: Image Assessment Technique and Case Examples
High resolution yttrium-90 ((90)Y) imaging of post-radioembolization microsphere biodistribution may be achieved by conventional positron emission tomography with integrated computed tomography (PET/CT) scanners that have time-of-flight capability. However, reconstructed (90)Y PET/CT images have high background noise, making non-target activity detection technically challenging. This educationa...
متن کاملPersonalized predictive lung dosimetry by technetium-99m macroaggregated albumin SPECT/CT for yttrium-90 radioembolization
BACKGROUND For yttrium-90 ((90)Y) radioembolization, the common practice of assuming a standard 1,000-g lung mass for predictive dosimetry is fundamentally incongruent with the modern philosophy of personalized medicine. We recently developed a technique of personalized predictive lung dosimetry using technetium-99m ((99m)Tc) macroaggregated albumin (MAA) single photon emission computed tomogra...
متن کاملPost-radioembolization yttrium-90 PET/CT - part 2: dose-response and tumor predictive dosimetry for resin microspheres
BACKGROUND Coincidence imaging of low-abundance yttrium-90 (90Y) internal pair production by positron emission tomography with integrated computed tomography (PET/CT) achieves high-resolution imaging of post-radioembolization microsphere biodistribution. Part 2 analyzes tumor and non-target tissue dose-response by 90Y PET quantification and evaluates the accuracy of tumor 99mTc macroaggregated ...
متن کاملInterventional radiological treatment of hepatocellular carcinoma.
BACKGROUND Locoregional treatments of hepatocellular carcinoma (HCC) have evolved over the past 20 years. Interventional radiologists have developed an important role in the palliative and curative treatment of the disease. This review summarizes commonly used interventional radiological treatment protocols to assist practitioners in understanding the techniques used to treat HCC. METHODS Var...
متن کامل